NVIDIA Ada Lovelace Architecture
Experience fast, interactive performance—powered by the latest NVIDIA Ada Lovelace architecture-based GPU—with ultra-fast, onboard graphics memory technology and optimized software drivers for professional applications. The Shader Execution Reordering (SER) system allows on-the-fly organization and reordering of workloads, grouping similar performing threads so the streaming multiprocessor (SM) and RT Core can operate more efficiently.
CUDA Cores
The NVIDIA Ada Lovelace architecture-based CUDA cores deliver up to 2X the single-precision floating-point (FP32) throughput compared to the previous generation, providing significant performance improvements for graphics workflows such as 3D model development and compute for workloads like desktop simulation for CAE.
Third-Generation RT Cores
Third-generation RT Cores provide up to 2X the throughput of the previous generation and the ability to run ray tracing with either shading or denoising capabilities concurrently. This accelerates renders for M&E content creation, AECO design evaluations, and manufacturing virtual prototyping. Third-generation RT Cores deliver up to 2X the ray-tracing performance over the previous generation, delivering groundbreaking performance for photorealistic rendering. Enhanced RT Cores combined with new SER technology dynamically reorder inefficient workloads, dramatically improving shader performance to accelerate end-to-end ray-traced image rendering performance.
Fourth Generation Tensor Cores
Fourth-generation Tensor Cores provide up to 4X faster AI training performance than the previous generation with FP16 precision. Support for the new FP8 data format for inference provides more than 4X faster performance than the previous generation and reduces data memory usage by half (compared to the FP16 data format).
PCIe Gen 4
RTX 4000 supports PCIe Gen4, which doubles the bandwidth of PCIe Gen3 from 15.75GB/sec to 31.5 GB/sec for x16 connections, improving data transfer speeds from CPU memory for data-intensive tasks such as AI, data science, and creating 3D models from large datasets. Faster PCIe performance also accelerates GPU DMA transfers, providing faster video data transfers from GPUDirect for Video-enabled devices and faster IO with GPUDirect Storage.
Higher Speed GDDR6 Memory
RTX 4000 features 20GB of GDDR6 memory, providing the memory needed for rendering, data science, engineering simulation, and other GPU memory-intensive applications. Support for ECC memory delivers uncompromised computing accuracy and reliability for mission-critical applications.
There are no reviews yet.